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The effects of a uniform electric field on the optical response functions of a semiconductor
are calculated, by numerically solving the effective-mass equation for a Wannier exciton. The
calculations assume an isotropic effective-mass model of direct transitions at a three-dimen-
sional M, threshold. The relationship between the real and imaginary parts of the dielectric
function are discussed for the purposes of understanding the physics of electroreflection and

developing rules of thumb for interpreting electroreflectivity spectra.

The theory is compared

with the electroreflectivity data at the direct edge of Ge taken by Handler, Jasperson, and

Koeppen, and yields very good agreement.

The value of the momentum matrix element ex-

tracted from the fit of theory to experiment is 0.35%/a,, in excellent agreement with ex—

perimentally measured values.

I. INTRODUCTION

The optical properties of semiconductors, and
the changes in those properties induced by external-
ly applied forces, have provided some of the most
useful and experimentally accessible information
about the electronic states of covalent materials. !*?
In particular, electroabsorption has been of con-
siderable interest since 1958, when Franz?® and
Keldysh* performed the first calculations of the ef-
fects of a strong electric field on the optical absorp-
tion coefficient. The subsequent introduction® of
phase-sensitive detectors, with their high signal-
to-noise ratios, greatly facilitated the measure-
ment of externally induced changes in the optical
constants and stimulated considerable experimental
effort in electroabsorption, electroreflection, and
other types of modulation spectroscopy.® However,
theories of the optical response of semiconductors
in an electric field"’® were based primarily on the
one-electron Franz-Keldysh theory until 1965, when
Duke® attempted to include electron-hole scattering,
using a model potential. Subsequently, Ralph® ob-
tained numerical solutions of the effective-mass
equation for an exciton in a uniform electric field.
Blossey ' extended Ralph’s theory to include ex-
citonic effects at M3 as well as M, critical points;
in addition, he discussed the effects of thermal
broadening and calculated differential electroabsorp-
tion at the M, critical point in lead iodide.'? Cal-
culations of direct!® and indirect!* allowed electro-
absorption and “half-forbidden” and “forbidden”
electroabsorption, ** and the effects of electric fields
on optical absorption edges, !® have been performed
in this laboratory.

The present work goes beyond the one-electron
theory to provide a quantitative treatment of the ef-
fects of electron-hole correlations on measured
electroreflection spectra,'®® and presents a compari-
son with the electroreflectivity data of Handler,

| >

Jasperson, and Koeppen.!” We have considered
electroreflection for several reasons. First,
electric-field modulation is interesting theoretical-
ly since the electric field modifies electron-hole
correlations and changes selection rules. Second,
electroreflectivity spectra, although more difficult
to analyze than electroabsorption, are more readily
measured. The data for Ge taken by Handler,
Jasperson, and Koeppen'” are ideal for this pur-
pose: (i) The large number of oscillations in the
electroreflectivity spectrum suggests that the elec-
tric fields were highly uniform, (ii) the range of
photon energies covered, 0.7-1.2 eV, includes the
M, edge, where the effects of excitons on the line
shapes are highly important, (iii) the energy-band
structures are well known in this region and the
isotropic effective-mass approximation is obeyed
quite well, and (iv) the broadening is small and
hopefully has only a weak dependence on energy.
Thus the experiment of Handler, Jasperson, and
Koeppen is a prototype of electroreflectivity mea-
surements on highly excited electronic states—states
embedded in a continuous background associated
with a lower-energy threshold.

We have undertaken this work to understand the
principal effects of excitons on the optical proper-
ties of electric-field-perturbed semiconductors.
Previous efforts 1*~!3 to include the quasibound and
continuum exciton states in calculations of direct
transitions in electric fields have been limited to
calculations of electroabsorption, and have failed
to achieve better than qualitative agreement 18 with
experiment. Here, we are able to obtain relatively
good agreement between calculated and measured
differential electroreflectivity, indicating that (i)
the Elliott exciton theory 1% is capable of describing
the small effects measured in modulation spectra
and (ii) Handler, Jasperson, and Koeppen'’ have
succeeded in obtaining a uniform applied electric
field in the absorbing region of their Ge samples.
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FIG. 1. Energy-band edges V(z) (heavy solid lines)
and wave functions ¥(z) (dashed lines) of conduction and
valence electrons as a function of position z. (a) With
no electric field the band edges are flat. Direct optical
transitions are allowed only for photon energies 7w = E g.
(b) In an electric field F, the bands are tilted. Transi-
tions now occur at all photon energies. For Zw<Eg, the
overlap in the wave functions and hence the transition
probability, is exponentially small, while for Zw>Eg,,
the transition probability is finite and oscillates as a
function of photon energy Zw.

The calculation proceeds in several steps. First
we calculate the imaginary part of the dielectric
response function €,(w, F), which is proportional
to the optical absorption. Next, by using the Kra-
mers-Kronig dispersion relations, we arrive at the
real part of the dielectric function €, (w, F). All the
remaining optical response functions are then

readily calculated, including the electroreflectivity.

We have chosen to calculate an electroreflectivity
spectrum for comparison with the measured values
AR/R. An alternative procedure would have been
to obtain a “measured” spectrum for Ae(w, F) by
Kramers-Kronig-transforming the data and then
comparing theory with experiment. Our principal
reason for not following the latter procedure is that
electroreflectivity data are often taken only over a
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limited range of photon energies; thus significant
contributions to the dispersion integrals may arise
from unmeasured parts of a spectrum. In addition
to the differential electroreflectivity, we have also
obtained the dependences of the various optical
response functions, such as the index of refraction
and the absorption coefficient, on the photon energy.

In Sec. II we summarize the principal physical
results of the theory of electroabsorption. In Sec.
III we discuss the Kramers-Kronig transformation
and present several intuitively instructive examples
of its effects on typical line shapes. Section IV is
devoted to a treatment of the optical response func-
tions of a semiconductor in a uniform field. Section
V deals with the comparison of the theory with the
electroreflectivity spectrum of Ref. 17; Sec. VI
summarizes our results.

II. PHYSICS OF ELECTROABSORPTION

In zero applied field the wave functions of a solid
are Bloch functions,

Pni= zl)iuni(‘f) ’ 2.1)

where pg= V2 ¥ 2 y1/2 (cogk. T+ i sink- T) is the
envelope function and u,;(r) is a periodic function.
The (real part of the) envelope function varies sinus-
oidally in configuration space and is sketched for

a typical conduction electron and a somewhat heavier
valence electron in Fig. 1(a). The application of

a uniform field F=F2 has the effect of accelerating
the plane-wave envelope functions, while polarizing
the periodic parts of the Bloch functions. In a
static gauge (K= 0, ¢=~-Fz), the conduction and
valence bands are tilted [Fig. 1(b)] and the effec-
tive-mass equation for the electron envelope func-
tion becomes %

(P/2m = eFz,)h(t,)=E% ) .

Here we have assumed parabolic bands and an
isotropic effective mass m, for the electron; the
electron’s position and momentum operators are
denoted by T, and p,, respectively. The hole en-
velope function solves a similar effective-mass
equation. Approximate % stationary-state wave
functions for the electron are products of plane
waves and Airy functions, modulated by polarized
u,; functions:

Vn E(I‘e): y-anz (2772)%)1/4 exp(ik, X +1k ,y,)

XAL (A 2o+ XeEz/eF)uni(;e)

(2.2)

+F ZiJE M (nk, n'l:')u,,.;:(?e)
r
Here \3=2m,le|F/h% E%=E,- % (k%+k%)/2m,,
and M is a mixing coefficient involving a matrix
element of 2z, and is usually sufficiently small to
be neglected. ?* Concentrating on optical transi-
tions from near the top of the valence band to the

@. 3)
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bottom of the conduction band, we find that the
imaginary part of the dielectric response function

|

€2(@)c 2 | [TAI(o2+ NE®,/eF )Ai (A2 +

where X, is defined as in Eq. (2. 3).

The qualitative features of electroabsorption
can be deduced from this one-electron picture.
As can be seen in Fig. 1(b), the absorption (which
depends on the overlap of the wave functions) is
finite but exponentially decreasing below the gap
and oscillatory above the gap.# This can be under-
stood quantitatively by carrying out the integral in
Eq. (2.4) using the convolution theorem for Airy
functions. 2* The result is an Airy function whose
argument depends only on the reduced mass u
= m;+m;')? and on the energy difference E— E%.
The sum over the final states is readily done and
gives the result®?

2e%|{cl&-plv)I% 2u
miw? v

€2(w)= Kf Ai’(t)dt, (2.5)

n
where (c lE-ﬁ]v) is the transition matrix element
of the component of the momentum along the direc-
tion of polarization of the photon, €,%=2pule|F/R2
and 7= — (E 45— Fw)\/eF. The integral in Eq. (2. 5)
is responsible for the frequency dependence deduced
from Fig. 1(b): For Zw<E,,, €;(w)is exponentially
small, while for Zw >E,,, €,(w) oscillates.

The effects of excitons are not easily represented
on Fig. 1, so we transform from electron and hole
coordinates to center-of-mass and relative- motion
coordinates of the electron-hole pair. The center
of mass has no net charge, and moves as a free par-
ticle (plane wave), unaffected by a uniform field.
The potential energy for relative motion is the ramp
depicted in Fig. 2 and the “exciton” envelope func-
tion? is

Vi, = VY MRy (5 (2.6a)

where K and R are the center-of-mass wave vector
and position vector, respectively, T is the electron-
hole separation, and the relative-motion wave func-
tion U,(T) is given by

UV('!’,)= V—5/12 (2172)\)“461 (Ry % +k yy) Ai [M+ ()\/eF)E,] ,

(2. 6b)
just as in Eq. (2.3). Here v is the set of quantum
numbers k,, k,, E; M=2ulel|F/h®is defined for
reduced electron-hole mass u. In this “exciton”
picture®?? the optical absorption is proportional
to the density of states times the probability that
the electron and hole are in the same unit cell,

€ @)<2,|U,0)|*6 (0 -Eey-E,) . @
Substituting the wave function (2. 6b) in Eq. (2.7),
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is proportional to the square of the electron-hole
overlap (times the density of states),

MEYeF)dz |26 (E, = E 4+ E gap — H0) , (2.4)
[
we again find
€)= L A?[(\/eF)E,]
kxkyEy
X8 (hw = E g = E ,— (B%/211) (R, 2+ k7)) (2. 8)

which, when summed, is identical to the one-elec-
tron result, Eq. (2.5). In this “exciton” picture
the exponential Franz-Keldysh absorption tail and
the oscillatory absorption above the gap follow from
the relative-motion wave function at zero electron-
hole separation,

U(0)= V=% 2n*x)* Ai [(\/eF)E,] . 2.9)

The introduction of the electron-hole interaction
-e?/ €97 is now possible in the exciton picture (Fig.
2). The attractive Coulomb interaction draws the
“particle” toward the origin, causing the relative-
motion wave function U(T) to be enhanced near 7= 0.
Thus the optical absorption, which is proportional
to 1U(0) 13, is increased by the Coulomb interac-
tion (Fig. 2) both above the gap (E >0) and below
(where the enhancement is an exponential function
of E). In addition, the Coulomb interaction causes
the principal features of the absorption spectrum
to be shifted to lower energy and increases the
period of the oscillations of €,(w) for photon ener-
gies greater than the band gap.'® These features
are evident in Fig. 3(a), where we have plotted

v,u 4
L. /\ <
Zyel
\/ % !
/
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FIG. 2. Potential V(zg;) and wave functions U(zye;) for
relative motion of electron and hole as a function of elec-
tron-hole separation Zy;. The ramp potential (solid line)
due to the applied electric field is modified when the elec-
tron-hole Coulomb interaction is included (dashed curve),
A “bound” (E<0) and “continuum” (£ >0) wave function
are plotted. Note the exponential enhancement of U(0)
for the “bound” wave functions.
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FIG. 3. Absorption strength as a function of photon
energy. (a) The solid curves correspond to an applied
field appropriate to the heavy hole at the Ge direct edge.
The dotted curves are for zero applied field. The exciton
curves lie above the one-electron curves for all values
of photon energy. The dotted spike represents the con-
tribution of the exciton bound states for —=1<E <0, The
continuum contribution of the zero-field excitons is
finite at E =0, whereas the free one-electron curve
shows the usual square-root threshold behavior. No
broadening is included. (b) The zero-field (dotted)
curves in (a) are broadened and replotted on an expanded
energy scale, for various values of I'/R. The solid
curves correspond to excitons, while the dashed curves
are for one-electron theory. E =-1 corresponds to the
1s exciton state. The labels are as follows: A, T'/R
=0.1; B, I'/R=0.2; C, I/R=0.5; D, T/R=1.0; E, T/R
=2.0, Note that the n=2, 3, ... exciton states are not
resolved for I'/R>0.1 and that I'/R~ 0.2 was used in the
fit to AR/R. Observe the difference between the exciton
and one-electron curves.
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the absorption strength |U(0)12S(iw - E ;) [S(E)
is the density of states at energy E ] as a function
of photon energy, for transitions from the heavy-
hole band in Ge in a field F of 4.2x10* V/cm
(f= le|Fa/R is a dimensionless measure of the
strength of the field in exciton Rydbergs per elec-
tron per excition Bohr radius; the field in the fig-
ure is thus 61 times stronger than the field needed
to ionize the excition.) The zero-field unbroadened
absorption strengths predicted by the exciton and
one-electron theories are also plotted in Fig. 3(a).
If thermal broadening is a small perturbation
(i.e., I'<R), then the broadening may be included
in the theory by convoluting the zero-field absorp-
tion-strength curves with a Lorentzian of half-width
I". This convolution effectively averages the ab-
sorption strength over an energy of order I' and has
little effect on the smooth parts of the spectrum; the
amplitudes and phases of the oscillations of the /=61
curve are reduced and shifted, respectively—but the
qualitative aspects are not significantly altered.
However, the zero-field spectrum near and below
E=7w - E.,=0 is significantly affected by the broad-
ening, as may be seen in Fig. 3(b). This region of
the spectrum is responsible for the first negative
peak of differential absorption and reflectivity spec-
tra. Thus the dominance of excitons and the effects
of broadening are most apparent in the first negative
peak of an electromodulation experiment, but are
generally evident throughout the spectra.

III. KRAMERS-KRONIG RELATIONS

Once the imaginary part of the dielectric response
function €, is known, the real part €, can be deter-
mined by the Kramers-Kronig relations. The ex-
plicit form of the Kramers-Kronig relations used
throughout solid-state physics is

27 W)
€1(w)—1—7TP,/0’ Fz;—ag-dw.

Here P[ is the Cauchy principal-value integral, and
€, and €, are the real and imaginary parts of the
complex dielectric response function.® The
Kramers-Kronig relations follow directly from the
principle of causality, and put very few restrictions
on the explicit form of €,(w). Analogous dispersion
relations® connect the real and imaginary parts of
the complex index of refraction #i=n +ik=(€)/2 and
the magnitude and phase of the reflectivity at nor-
mal incidence

(3.1)

Rz gto_ (L =no) +ik
(n+ny) +ik

[here n, is the (real) refractive index of the medium
of incidence]:
© ’
(w)= = Pf InR{w')
™ Jo

w,g_wa dw,. (3. 2)
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This dispersion relation is of particular importance
to experimenters who measure the reflectivity and
wish to obtain €, and €,.

Because of the linearity of Kramers-Kronig
transforms, they are also valid for differential

quantities. In particular,
© 'A ’
s ()= 2 f L5y g (3.)
0
and
@ pf~AR__1 ,
Ab(w) = = Pi/o‘ R m‘?dw . (3.4)

Here the A indicates a difference between the finite-
field and zero-field quantities, e.g.,

A€,y(w) = €,(w, F) - €5(w, F =0).
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The Kramers-Kronig transformation is quasilocal
in that isolated structures in the imaginary part of
a function g4(w) will tend to map into corresponding
isolated structures in the real part g,(w). Thus at
frequencies “near resonance”® we can single out
the contribution to the real part g, of a particular
structure in the imaginary part g,. We have de-
picted the real and imaginary parts of some simple
functions in Figs. 4-7, in order to get an intuitive
feeling for the effect of the Kramers-Kronig trans-
formation. The real and imaginary parts of these
functions are listed in Table I. The purpose of
these figures is to illustrate a set of rules of thumb
by which structure in €,(w) can be identified with
structure in the more easily interpretable €,(w).
Note that a general €;(w) spectrum can be written’
as a linear superposition of structures of the sort

TABLE I. Some simple functions and their Kramers-Kronig transforms whose graphs appear as Figs. 4—8. In the
entries below, only the positive-frequency parts (w >0) %, and 2y are shown. The complete forms are g;(w) =gy (w)
—Zy(— w) and g((w) =Fy(w) +Z1(— w). The sole exception is in lines 7(a) and 7(b), where the complete form of Zy(w) is dis-

played.
Fig' 22(‘*’) El(w)
4() 1, lw-—w0|<1} 1 (w—wo)—l
o, otherwise m (w=wy) +1
4() -1, ~1l<w=—w)<0 1 (0= w)?
1, 0 <w—w0<1 ’? m
0, otherwise 0
4(c) Hw=wy+1), Jw—wyl<1 } 1 1+w+w0+1 n (w—wp) —1 >
0, otherwise T 2 (w=—wy +1
4(d) (w=wy+1), ~1l<w=wy<0 ( ) ( v
- -1 w-w w=-w
—-(w=wy—1), O<w=—wy<1 Lnle= % + 0 1n 2 ‘
0, otherwise T (o-w 1 4 (w=wy*~1
4(e) 2(w=wy+1), —l<w—-wy<=$%
—2(w—wy), —3<w—wy<3} 2 (w-wp)?-3%| 2 (W= wy=—3)? (W= wy+1)
2(w=wy—1), P<w—wy<1 7o W=yl =1 —(@—woln (w—wy+3)2 (W= wy—1)
0, otherwise
5(@), 5() 1. . W= W,

’ oo Tty lid
1+ (w= wp)? (solid) T+ (@—wp) (solid)
elww0?/2 (dashed) (@/m? w012 [mwn gt gy {dashed)

5(), 5 Zalw+3)lsey=F2(w—3) 50 Zi(w+3) I5ay=F1 (0= 50
6(a) (cos w)/(w? + 25) no closed form
6(b) e~/ 1Scosw no closed form
7(a) (w3 %/ P (= w2, w >wg (W} 2/ )20}/ ? = (w+w!/Y, w>wg
0, w<w, (@372 / WA 20d/ 2 = (w+ w2 = (0= w) /7], W< W,
7() (wgl 12/ P (0 — w312, W >wy (= wg %/ 2wl 2= (w+w?Y, w>w,
0, w<wg (- wzi/z/wz)[zd?;/z- (w + w‘)s/zl- (w,— w)m], W< W
8 __OJ—_wo_ - <A S 2 A
(o—wpirst | w=wyl Gogfest © arctan ¢
0, otherwise L wmwg L (w=wg) = A
(W= w2 +8% T (w—wp) +A
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FIG. 4. Some simple functions
and their Kramers-Kronig trans-
forms. The dashed curves are the
transforms of the solid curves.

Wo+5 / \

considered in Table I.

The approximate rules of
thumb which can be deduced from these spectra are
as follows: (i) Extrema in €,(w) correspond to zeros
in €,(w) and vice versa; (ii) if €,(w) is nearly sym-
metric about a particular frequency w,, then €,(w)
is antisymmetric about the same frequency; (iii) an
abrupt rise in €, is transformed into a high peak in
€,—the height of the peak increases with the slope
of €, and (iv) a rapid variation in the slope of €,
leads to an inflection point in €,.

These rules are illustrated in Figs. 4-7. Figure
4(a) shows a rectangular pulse and its transform.
Note the symmetry, the presence of the logarithmic
singularity in g, arising from the infinite slope in
g2, and the slow falloff of g, with frequency. Such
a rectangular threshold behavior might be associ-
ated with an M, or M, two-dimensional critical
point. 3 Figure 4(b) illustrates a square wave,
which is the difference between two displaced pulses
like that in Fig. 4(a). This difference spectrum has
the same general features of Fig. 4(a) but contains
additional structure associated with the derivative
(or, more precisely, the difference) and falls off
more rapidly for large w. A more slowly varying
threshold is exhibited in Figs. 4(c) and 4(d); note
that the inflection points in g, correspond to discon-
tinuities in the slope of g,, that the reduced slope
of g, is manifested as a reduced height of g,, and
that the symmetry rule (ii) is obeyed. Figure 4(e)
presents a symmetrical triangular wave, which has

the general features of Figs. 4(c) and 4(d) as well
as the more rapid falloff associated with difference
spectra. Note that all the curves obey the rule that
zeros in g, correspond to extrema in g;. The rule
is obeyed by nearly all differential spectra, both
theoretical and experimental. 32

The contrast between spectra and difference spec-
tra is clearly shown in Fig. 5. In Fig. 5(a), we
show a Lorentzian of unit width as the solid curve
and a Gaussian of unit width as the dashed curve;
both are centered at w=w, In Fig. 5(b), their cor-
responding Kramers-Kronig transforms are shown,
using the same vertical scale as in Fig. 5(a). Note
that while the Gaussian has much sharper tails than
the Lorentzian, both their transforms have the same
asymptotic “near-resonance” behavior, 3
~(w—-we) .3 In Fig. 5(c), we have plotted the dif-
ference between two such Lorentzians displaced
from one another by one unit (solid), and the differ-
ence between two displaced Gaussians (dashed). In
Fig. 5(d), their corresponding transforms are
shown.  As we have seen before, the tails of these
differential quantities are much sharper than their
counterparts in Fig. 5(a) and 5(b). In addition, the
complementarity between extrema in Fig. 5(c) and
zeros in Fig. 5(d) is particularly apparent.

This complementarity rule is especially clear in
Fig. 6, where we have plotted two different decaying
oscillatory functions and their Kramers-Kronig
transforms. In Fig. 6(a), the amplitude decay is
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1

FIG.5. Some simple absolute
and differential spectra and their
Kramers-Kronig transforms.
The solid curves are based on
Lorentzian line shapes, while the
dashed curves are Gaussians.

(a) The basic curves, (b) their
Kramers-Kronig transform, (c)
difference between two curves of
type (a) displaced relative to one
another by one unit width, and
(d) Kramers-Kronig transform

pmm =N of (c).

Wo+56  Wo-5

(a) (b)

(d)

Lorentzian, while in Fig. 6(b) it is exponential (see inflection point in €, - 1. Although the scale in Figs.
Table I). * Unlike the functions given in Figs. 4and  7(a) and 7(b) is the same, the magnitude of €,, say,
5, the Kramers-Kronig transforms are not express- for the “forbidden” case will be smaller than that of
ible in terms of simple functions. Rather, they
have been obtained by numerical integration of the
Kramers-Kronig relation. Note that the transforms
g1 look like phase-shifted versions of the respective 03+
g2 8, where the shift is approximately 7/2 (at least

.04

asymptotically). Thus the minima and maxima in 02
g, correspond to the zeros in g,, as above. We find o1
this behavior again, in the case of electroabsorption e
spectra® (in Ref. 25 the Coulomb interaction is 0 S P2
neglected). o1 -
We next apply these results to some simple phys- )
ical situations. It is elementary to show that for -02
allowed band-to-band transitions at a direct edge,
R . X . R -.03
neglecting excitons, the imaginary part of the di- 10K

electric constant has a square-root dependence on
w. €,(w) is given in Table I, line 7(a), where 7w,
=Eg,, is the bandgap energy; this result assumes
parabolic bands and a constant transition matrix
element, and is evaluated for an M, critical point.
We do the Kramers-Kronig integral to obtain®®

€, (w)~-1, which also has a square-root dependence,
as shown in Table I. In a similar way, €,(w) and

€; (w)= 1 for the “forbidden”*® transitions in the
same approximation (the matrix element is assumed
to be a linear function of the electron’s wave vector)
vary as the § power of frequency, as may be seen in
Table I, line 7(b). These four functions have been
plotted in Figs. 7(a) and 7(b). Note in Fig. 7(a) that

the sharp rise in §lope in ¢, at W, appears ine-1 FIG. 6. Oscillatory functions and their Kramers-
as a sharp peak, in agreement with our rules of Kronig transforms. The dashed curves are the trans-
thumb. In Fig. 7(b), for the forbidden case, the forms of the solid curves. The amplitude of the solid

discontinuity in slope in €, at w = w, shows up as an curve is given by (w?+25)"! in (a) and by /15 in (b).
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FIG. 7. Dielectric constant €, and its Kramers-Kronig
transform €; -1 for direct transitions based on one-elec-
tron theory. Allowed transitions are shown in (a) and
“forbidden” transitions in (b). %w, is the energy gap.

the allowed case by a factor of order (ka;)?, typi-
cally about 10~%, where % is the relative-motion
wave vector and g is the lattice spacing. This
picture of direct absorption concentrates on the re-
gion of the Brillouin zone near an M, critical point,
assumes that the transition matrix element is inde-
pendent of energy, and neglects deviations of the
energy bands from the model of constant isotropic
effective masses. At higher energies, other tran-
sitions associated with different critical points in
the transition band structure [which have not been
included in Figs. 7(a) and (b)] will normally mask
the contribution of the direct edge.

The indirect transitions are not suited to such a
straightforward analysis. It can be shown®? that the
w dependence of ¢, for indirect transitions (phonon
assisted) is given by

2

(W= W, F wp,,)
€k ———&p—phon-_

w
oc 0,

In this expression w,, is the energy of a phonon,
the + signs corresponding to emission and absorp-
tion, respectively. Since for large energy (w— «),
€, approaches a constant, we expect the simple
Kramers-Kronig analysis used in Fig. 7 to give a
logarithmic divergence at large energies. Hence,
without a further assumption on the energy depen-
dence of the matrix element we can proceed no
further.

When we include electron-hole Coulomb interac-
tions, we find the following modifications. The op-
tical absorption (and hence €,) now contains an ad-
ditional factor of 1U(0)1%, the probability that the
electron and hole are in the same unit cell. (Al-
though the Coulomb interaction severely affects the
form of the wave function, the free-electron wave
functions becoming Coulomb waves or bound-state

w> wl * wphon

W< Wy E Wypop - (3.5)
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hydrogenic wave functions, and the density of contin-
uum states remains the same as in the one-electron
case.?”) Thus ¢, has a discrete part (w<w,) con-
sisting of a series of § functions, which corre-
sponds to the bound states, and a continuum portion
(w> wg) given by

1

€2CC-2—11? 1—e T ’ (3.63)
where

E= (ﬁw -Egap)/R ’ (3. 6b)

R = pe*/2é4nt (3. 6¢)

is the excitonic Rydberg, u is the reduced mass of
the exciton, and €, is the static dielectric constant.
For very large w, €, tends to the one-electron val-
ue, so that we can perform the Kramers-Kronig
analysis and be assured of convergence. We note
that at the band gap, €, is a constant and continu-
ous; thus the discontinuity in slope which occurred
in the one-electron case (see Fig. 7) is removed

in € -1 as well. Furthermore, the presence of
the 6 functions in €, at w,=w, — R/7n® leads to a

set of violent oscillations in € -1, since ¢ ~1

o (w2 - w?)? if €yoc (w— w,). Hence we must include
broadening in order to describe these curves in a
meaningful way. Recall that the Lorentzian-broad-
ened zero-field €, curves, with and without ex-
citons, are shown in Fig. 3(b). Similar considera-
tions apply to the cases of direct “forbidden” and
indirect transitions when excitons are included.
That is, the Coulomb interaction strongly modifies
the absorption over a large region around the en-
ergy gap, with a similar effect on the Kramers-
Kronig transform.

Finally, before leaving our discussion of the
Kramers-Kronig transformation, it will be in-
structive to illustrate the effects of truncating the
limits on the integral at w=wy+ A, Our choice, a
Lorentzian line shape of width S, is an extreme
case since it falls off very slowly for large w; it
is amenable to simple calculation, however (see
Table I, line 8). The Kramers-Kronig integral is
readily performed, yielding the result quoted in
Table I. In the limit of no truncation (A—»), we
recover the expected result, a Lorentzian of width
S. In Fig. 8, we have plotted g;(w) for several
values of A, We note the striking difference be-
tween g;(w) for finite values of A and the A= case.
The logarithmic singularities and the fact that
£1(w) is negative for most values of w may be sur-
prising. Also note that the maximum value (at w
= wy) is strongly affected by the cutoff. Thus, for
example, if we represent a typical peak in a AR/R
spectrum by a Lorentzian of half-width S=10 meV,
then by truncating the Kramers-Kronig integration
at 205=0. 2 eV above the peak, we expect the error
in the peak value of the Kramers-Kronig transform
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FIG. 8. Result of truncating Kramers-Kronig integral
of Lorentzian line shape of width S, for various values of
cutoff A.

to be about 4% and, more importantly, the detailed
behavior of the tails will be inaccurate even at en-
ergies as low as 50 meV above the peak. This
shows that considerable care must be taken to
adequately approximate the tails of a spectrum
whose Kramers-Kronig transform is sought. Fail-
ure to do so may result in significant errors and
may introduce spurious features.

IV. OPTICAL RESPONSE FUNCTIONS

Before calculating the differential electroreflec-
tivity, AR/R, it is necessary to know the values
of €(w) and €,(w) in order to evaluate the coeffi-
cients of A¢; and A€,. Since the reflectivity at
normal incidence is

_(n—ng)*+ K
T4y + R4

(4.1)

where 7 and % are the real and imaginary parts of
the complex refractive index of the medium and
ng is the (real) refractive index of the medium of
incidence, one can show by differentiation®® that
AR _3InR 31nR

= A€y +
R~ a¢q 1

A€, , (4.2)
where

cr=clleg -md) A, + A,

co=c'[(g —nB)/A, - €,/A],

c=ny/[(€, -nB)? +€2],

c'=2¢c¢/ |€|?,

A=x212[le| £ ]V%/ €] .

In deriving this symmetrical form, use was made
of the usual relations

lel +¢ \1/2
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1/2
= (E%ﬂ) " @.3)
which are the solutions of €, = #® — ¥* and €, =2 nk.
This relation (4. 2), together with an analogous one
for Af, the variable conjugate to AR/R, can be
inverted to yield Ae€; and Ae,. {Experimentally
AR/R is measured and then A6 is obtained by a
Kramers-Kronig integration [see Eq. (3.4) and
Ref. 1]}

The optical functions were calculated as follows.
The value of

2,2 - -
a0, )= 205y | (e[ @50
x|U0)|2S(iw-Eg,) (4.4

was transformed using the Kramers-Kronig inte-
gral to yield €,(w, F). Since the above expression
for €, only includes the contribution due to direct
transitions at the fundamental edge, the remaining
oscillator strength of all the higher-energy transi-
tions was simulated by adding a term G6(w — w,)
to €;. The value 7Zw, =4 eV was arbitrarily chosen
since the maximum value of the optical absorption
of Ge occurs near this phonon energy. The strength
G was then adjusted so that the static dielectric
constant acquired its correct value € (0)=€,=15.8.%
Typically the direct-edge contributions to €
amounted to less than 2% of the total.

The remaining optical constants (n, k2, o, and
R) were calculated from €, and €, using Egs. (4.1),
and (4. 3) and the relation between the absorption
coefficients o and %, i.e.,

a=(2w/c)k . (4.5)

These functions are plotted in Figs. 9(a)—9(f). Note
the different scales on the ordinates of these
curves. The curves corresponding to the disper-
sive parts of optical constants, viz., €, n, and

R, are primarily given by the simple curves

2 [OFY
€g=1+—G—3=—3
1 T wat—w®’

\ 4.6)
N

n+ng

We have taken ny=1. 33, the index of refraction of
water, since AR/R for the data we shall examine
was measured in an electrolytic bath. Upon these
curves are superimposed the (small) direct-edge
contributions. In contrast to the dispersive parts,
the absorptive parts of the optical constants €,, %,
and o are completely determined by the direct
transition, since the only other source of oscilla-
tor strength is the & function at Zw, =4 eV, which
lies far to the right on this energy scale. Note too
that these curves are quite smooth in the vicinity
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of the gap since the electric fields and the thermal
broadening have smoothed (ionized) the discrete
exciton lines which would have been present in the
zero-field low-temperature case. The absolute
magnitude of o agrees well with accepted experi-
mental values. 27

In Figs. 10(a) and 10(b), the coefficients c,(w) and
c;(w) are plotted [see Eq. (4.2)]. Note particularly
the difference in the two vertical scales. As has
been noted by others, }” the principal contribution
to AR/R near the divect edge of Ge comes from Agy,
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V. COMPARISON WITH EXPERIMENT

The differential optical response functions were
calculated as follows. The imaginary part of the
dielectric function €,(w, F, I'=0) [given in Eq. (4. 4)]
was evaluated using programs described else-
where, 3'® The zero-field'® value of €,(w, F=0,
I'=0) was subtracted from Eq. (4.4) to give
Aéy(w, F, I'= 0) and the difference convoluted with a
Lorentzian to give A€,(w, F,I'), The Kramers-
Kronig integration was then carried out to give
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A€,(w, F,T). For a detailed discussion of these
routines, see the Appendix. These calculations
were carried out independently for the light- and
heavy-hole valence bands, and the contributions
added. *® In Figs. 11(a) and 11(b) we have plotted
the contributions of the light and heavy holes to
A€, and A€, respectively. The dominant features
of these two figures are the following: (i) The light
hole contributes roughly 30% of the total, (ii) the
period of the oscillations in energy of the light hole
is longer than that due to the heavy hole by the ra-
tio (my,/m;)Y? in the asymptotic limit #w — E,,, > 50R,
and (iii) the two contributions are of opposite sign
at energies of 0.1-0.15 eV above the gap, leading
to “beats.” In Fig. 11(c), A€, and A€, are replotted
on one graph (only the sum of the light- and heavy-
hole contributions is plotted). Many of the general
features of Kramers-Kronig transforms discussed

Ge DIRECT TRANSITIONS

Ge DIRECT TRANSITIONS 06
06
~~~~~~~~~~ Light hole 04
L ~=---Heavy hole Lar
04 —— Total

02
A€,

K . .
Cy .0006f
0043 .0004f
0002}
0042 L L : . L L 1 ) o

85 100 105 HO
PHOTON(%’\{ERGY (eV)

in Sec, II are evident here. We note that the two
functions are of the same general magnitude, that
zeros in one curve tend to correspond to extrema
in the other, and vice versa, and that while A¢,
decreases to zero very quickly for photon energies
below the gap, A€, falls off much more slowly, as
we have seen in Figs, 4 and 5.

In Fig. 12(a), A€, is plotted for both the exciton
theory (dashed line) and the Franz-Keldysh theory
(dotted line)., Several points are immediately ap-
parent, (i) The magnitude of A€, including excitons
is approximately twice as large as that of the
Franz-Keldysh theory. (This difference in mag-
nitude is particularly pronounced in the region
near and below the absorption edge.) Thus, in ex-
tracting a quantitative value of the square of the
constant transition matrix element by comparing
with experiment, one would obtain in the Franz-

06

EXCITON THEORY
— Al¢,

~~~~~~~ Light hole
———Heavy hole

-02
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" s PR 1
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c

Differential dielectric function as a function of photon energy, calculated from exciton theory. Broadening

of I' =3 meV has been included. The light-hole (dotted) and heavy-hole (dashed) contributions are summed to give the

solid curve. The imaginary part A€, is shown in (a), while its Kramers-Kronig transform A€, is shown in (b).
exciton Rydbergs for the light and heavy holes (R;, R;) and the broadening width I' are also shown.

The
(¢) The sum of light-

and heavy-hole contributions from (a) and (b) replotted as one graph. The solid curve is A€,, while the dashed curve

is Aei.
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Keldysh theory a value nearly 1.4 that predicted
by the exciton theory. (ii) The curve including
excitons lies at lower energies than the one-elec-
tron result; this is especially evident near the band
edge, but persists to high energy. It is important
to account for this shift of the spectrum toward
lower energy when determining accurate values of
the direct energy gap. (iii) The first negative
peak, which corresponds to the broadened zero-
field excitons in the difference A€,, is somewhat
narrower and sharper than that of the Franz-
Keldysh curve. Inasmuch as the dependence of €,,
with excitons included, is rather smooth in this
region, this peak is a sensitive indicator of the
importance of the electron-hole interaction. In a
similar fashion we have plotted A€, in Fig. 12(b);
the dashed line represents the exciton theory and
the dotted line the one-electron theory. The three
excitonic features of the A€, curve are also man-
ifested here: (i) a larger magnitude, (ii) a shift
to lower energy, and (iii) a large negative peak.
The large negative peak is due to the abrupt absorp-
tion threshold for excitons which, for large I,
gives an abrupt step-function-like threshold com-
pared with one-electron theory’s soft square-root
threshold [see Fig. 3(b)]. According to the rules
of thumb for Kramers-Kronig transforms, this
more abrupt absorption threshold in €,(w, F=0, I
for excitons causes €,(w, F=0,T) to be larger, con-
tributing a larger negative peak to A¢,. In addi-
tion, note that the exciton effects are especially
pronounced below the band edge, where Ae, is
considerably larger than that of the one-electron
theory.

With these values of A€, and Ag, it is possible
to evaluate the differential electroreflectivity AR/R
(see Sec. IV). In Fig. 13, the calculated values

PHOIO':)I\I) ENERGY (eV)

of AR/R(w) have been plotted (dashed line) and com-
pared with the experimental results of Handler,
Jasperson, and Koeppen!’ (solid line) and their

best fit based on the one-electron Franz-Keldysh
theory (dotted line). In Fig. 14, these results have
been plotted semilogarithmically.

The following fitting scheme has been used. The
contributions to AR/R from both the light and heavy
holes have been added separately and by a least-
squares calculation the best coefficients of these
contributions have been determined. Thus, in ef-
fect, the momentum matrix elements are deter-

Ge DIRECT TRANSITIONS

003 ]
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--- Excitons
o002 e - Franz-Keldysh
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R 001 +
_OO' -
-002+
-003
-004+
1 1 L 1
70 75 80 85 90
PHOTON ENERGY (eV)
FIG. 13. The differential electroreflectivity as a func-

tion of photon energy. The solid line is the experimental
result of Handler, Jasperson, and Koeppen (Ref. 17).
The dashed curve is the best fit from exciton theory,
while the dotted curve is the best fit from one-electron
theory found by the authors of Ref. 17.
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mined independently for the light and heavy holes.
The matrix elements are the only free parameters
available since the effective masses and field
strengths are given experimentally. For a com-
plete listing of the various parameters used see
Table II. In this way it was found that the mag-
nitude of the heavy- and light-hole momentum ele-
ments are 0.354 %/a, and 0.350%/a,, respectively,
where a; is the Bohr radius of hydrogen. These
values are to be compared with numbers given by
Aspnes and Frova*! of (i) 0.37%/a, (obtained from
optical absorption data*?), (ii) 0.367%/a, (extracted
from Vrehen’s data*® on the strain-split heavy-
hole exciton), and (iii) 0.39 %/a, (predicted by

k - perturbation theory*!). This remarkable
agreement between the present theory and experi-
ment is convincing proof of the importance of ex-
citon correlations even in strong-field electro-
reflectivity experiments, a fact which has been
suspected for some time, %!

At this point let us contrast our fitting procedure
with that of Handler, Jasperson, and Koeppen. !’
Those authors used one-electron theory and chose
their fitting constants for a best fit in the region of
beats between the light and heavy holes, which oc-
curs at energies 150 meV above the gap. This fit
accurately describes the zeros of the AR /R spec-
trum, and gives a large difference (more than
100%)*® in the relative contributions of the light
and heavy holes, but they have not published an
absolute value for the transition matrix element.
In contrast, the present fit emphasizes the band
edge and first few peaks, gives a good fit in this
region of the spectrum, and predicts equal matrix
elements (within 2%) whose magnitude accords well
with accepted experimental values*! and with the
predictions of k f) theory. “ Moreover, the effec-
tive-mass theory of direct optical transitions is
most applicable near the edge region where the

bands are most parabolic, the effective masses
are most isotropic, and the broadening and its var-
jation with energy are relatively small.

The present fit of exciton theory to experiment
satisfies the criteria for a good fit of Ref. 13.
However, a fit of the Franz-Keldysh theory to ex~
periment using our fitting procedure is deficient
in three ways: (i) The matrix element is twice as
large as the accepted value; (ii) the contributions
of the electron and hole have opposite signs; and
(iii) the deviations from experiment are five times
greater than in the exciton theory. This is further
evidence of the inadequacy of the one-electron
theory.

The sole deficiency of the present work is that

TABLE II. Parameters used in calculating fits to
data, Figs. 13 and 14: p, and p,, exciton reduced
masses for light- and heavy-hole valence bands; F, elec-
tric field; f, and f;,, electric field in exciton Rydbergs
per electron exciton Bohr radius; T, broadening; 'Egap,
direct band gap; {c|€* plvl yand {clé*Plvh), momentum
matrix elements; aj, Bohr radius of hydrogen.

Ref. 17 This work
(without excitons)  (with excitons)

e 0.022m, 0.0195m,

Ky 0.038m, 0.033m,

F 4.2x10% V/em 4.2x10* V/em

JA 174 174

I 61 61

T 3 meV 3 meV

Eey 0.79 0.798
{clé.-Dlon) . 0.3547%/a,
(clé&-DBlovl) . 0. 3507/ a,
| {clé-Blon)/ 2.4? 0.98

{clé-Blomyi?
(001 polarization)

2Reference 44a.
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it fails to fit the nodes in the “beat” region of the
Ge electroreflectivity spectrum well. However,
based on our experience with these calculations,
we believe that these beats could be described
faithfully by the theory if broadening were intro-
duced as a free parameter (passibly energy de-
pendent), and if the energy dependence of the ex~
citon reduced masses were taken into account,

Let us emphasize that, in contrast with the work
of Ref. 17, our fit is not based on a least-squares
variation of the parameters (except for the tran-
sition matrix elements), because of the expense

of the calculations. The fact that we have obtained
a relatively good fit using the parameters of Han-
dler, Jasperson, and Koeppen!’—numbers obtained
by optimizing the agreement between one-electron
theory and experiment—demonstrates that one-
electron theory, when fitted to the higher-energy
oscillations of electroreflectivity spectra, yields
good estimates of effective masses u and broad-
ening I', but poor values of the transition matrix
element and the band gap. Fortunately the latter
two quantities are scale factors which do not enter
into the evaluation of the broadened absorption
strength | U(0)|2S(E) and are quite easily deter-
mined by merely sliding the theoretical AR/R spec-
trum (plotted semilogarithmically) over the experi-
mental spectrum, Finally, with the rapid inter-
polator recently developed, *® it will soon be un-
necessary to recalculate AR/R for each value of
the fitting parameters (e.g., applied field, effective
mass, and broadening); thus it is now becoming
practical to do a least-squares fit based on exciton
theory.

Therefore we feel that both the qualitative and
the quantitative features of electroflection spectra
can be understood with the excition theory. An
even more quantitative, extremely accurate the-
ory of electroreflection spectra will probably be
attained when it is possible to make inexpensive
least-squares fits of exciton theory to experiment,
varying the broadening I" and its dependence on
photon energy in accordance with accurate a priori

|

€(w0, F=0)= —5 ==

where R and a are the exciton Rydberg and Bohr
radius, respectively, and 6(x) is the unit step func-
tion. The difference between €,(w, F) and €,(w, F =0)
was convoluted with a Lorentzian of half-width T,

T

r[fw)?+ T2 ° (a2)

The convolution of the continuum contribution was
performed by using a 32-point Gaussian integration

R& Zn {1 - exp[‘ (h-TREj)/]}
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calculations of exciton-phonon scattering. After
comparison with such a theory, electroreflectivity
data for various semiconductors should yield pre-
cise values of energy gaps, effective masses, and
band-warping parameters.

VI. SUMMARY

The theory of optical transitions in uniform elec-
tric fields including electron-hole final-state cor-
relations has been used to calculate the differential
electroreflection spectrum of Ge near the direct
edge. The results are in good agreement with ex-
periment, yielding the correct line shapes and ac-
curate values for the matrix elements which de-
termine the strength of the transitions. In addition,
from a discussion of the qualitative aspects of elec-
troabsorption, and a set of rules of thumb for the
effects of the Kramers-Kronig transformation, we
are able to elucidate the physical reasons behind
the qualitative behavior of electroreflectivity spec-
tra. The principal uncertainty at the present time
lies in our simplified treatment of broadening.
Together with a more refined theory of broadening,
the exciton theory should provide a basis from
which to extract detailed information on the band
structure of semiconductors, using highly developed
experimental techniques for measuring differential
reflectivity in uniform electric fields.
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APPENDIX

All the calculations described in this paper were
done numerically since no explicit closed form ex-
pressions for €, or €; exist. Using the programs
described in Refs. 13 and 16, €,(w, F) was calcu-
lated over the range of energy 0.70-1. 20 eV, using
double-precision arithmetic. The corresponding
value due only to the Coulomb interaction is

-1 o
0w — E gop) + 2 (1a*n®)™ 6<h’w ~E g+ %) , (A1)

n=1

[

routine, *® an inherently more accurate calculation
than one based on Simpson’s rule. This method re-
quires evaluation of the integrand at relatively few
points, but has the disadvantage that these points
are not evenly spaced. This difficulty was met by
using a five-point Lagrangian interpolation routine*’
to evaluate the integrand at points intermediate be-
tween the uniform mesh on which it was originally
computed. At energies below the gap the discrete
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exciton contribution to €,(w, F =0) must be sub-
tracted from €,(w, F), which, of course, is contin-
uous across the gap. These 6-function contribu-
tions convert the convolution integral into an infinite
sum over discrete contributions. This sum was
done explicitly, again using double-precision arith-
metic, over the first 50 terms and the remainder
summed by an Euler-Maclaurin formula. 8 The dis-
crete exciton contribution to the convolution integral
was found to be roughly 5% or less of the continuum
contribution, except in the immediate vicinity of the
gap, where the two contributions become compara-
ble.

The broadened A€,(w, I') obtained in this way was
then transformed by the Kramers-Kronig integral
[Eq. (3.3)] to give A€ (w, T'). Since a principal-
value integration is involved, steps must be taken
to ensure that the divergent behavior of the inte-_
grand is treated properly. The most effective
method is to perform a subtraction, *® although an
analog of Simpson’s rule exists. 50 Thus, to calcu-
late P[2 dx f(x)/(x - a), we replace f(x) by g(x)(x — a)
+f(a), where g(x)=[f(x)-f(a)]/(x—a). The integral
becomes [ag(x)dx+f(a)In|(B-a)/(A-a)|, where
g(x) is well behaved at x=a, and hence can be inte-
grated by any of the standard methods. In our cal-
culations Gaussian integration was used. The above
procedure of subtractions is particularly accurate
if the interval (4, B) is not too large. Thus it is
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best to break the original integral into several in-
tervals, to use the subtraction technique in the in-
terval containing x=a, and to do the other parts in
the usual fashion.

One further precaution must be noted. Since in
the “near-resonance” region® the Kramers-Kronig
integrating factor falls off rather slowly at high
frequencies [as (w- wy)™], some scheme of extrap-
olating the integrand €,(w) is needed. As pointed
out earlier, a premature cutoff in the integration
may lead to spurious results (see Fig. 8). In our
calculation it was impractical to broaden each value
of A€, at the high-frequency end of the spectrum,
needed for the Kramers-Kronig integration. In-
stead, A€,(w, I') in the tail region was fitted to the
unbroadened result after adjusting the amplitude by
an appropriate factor. This factor was determined
by a least-squares fit of the form Ax® to the ratio
of broadened to unbroadened values at the highest
values at which broadening had been calculated.
However, the contribution of this region is small
(<1%) and the total results are not very sensitive
to the scheme used. The high-frequency dependence
of the unbroadened A€, was obtained from the
Franz-Keldysh value, with a suitable amplitude and
phase shift included*® (typically, the amplitude was
about 15% greater than the Franz-Keldysh value,
and shifted in energy by about 1.5 exciton Ryd-
bergs).
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